Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134183, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574663

ABSTRACT

Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.

2.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466879

ABSTRACT

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Subject(s)
Ecosystem , Microbiota , Soil/chemistry , Conservation of Natural Resources , Biodiversity , Forests , Bacteria , Soil Microbiology
3.
Int J Biol Macromol ; 263(Pt 2): 130158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368986

ABSTRACT

Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials.


Subject(s)
Deep Eutectic Solvents , Hydrogels , Humans , Lignin , Electric Conductivity , Radiopharmaceuticals , Solvents , Tissue Adhesions , Water
4.
Adv Colloid Interface Sci ; 324: 103093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306848

ABSTRACT

With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.

5.
Biomacromolecules ; 25(3): 1696-1708, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38381837

ABSTRACT

Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al3+). The alkali-treated wood retains lignin as the skeleton of the hydrogel. Second, Al ions were added to the metal coordination with lignin. Finally, by employing free radical polymerization, we construct a conductive electronic network using polyaniline within the wood/PAM-Al3+ matrix to create the flexible sensor. This approach leverages lignin's integrated structure within the middle lamella to provide enhanced swelling resistance and stronger binding strength in the transverse direction. Furthermore, coordination between lignin and Al ions improves the mechanical strength of the wood hydrogel. Polyaniline provides stable linear pressure and temperature responses. The wood/PAM-Al3+ exhibits a transverse swelling ratio of 3.90% while achieving a longitudinal tensile strength of 20.5 MPa. This high-strength and high-stability sensor is capable of monitoring macroscale human behavior. Therefore, this study presents a simple yet innovative strategy for constructing tough hydrogels while also establishing an alternative pathway for exploring lignin networks in new functional materials development.


Subject(s)
Aniline Compounds , Hydrogels , Lignin , Humans , Lignin/chemistry , Hydrogels/chemistry , Wood , Ions/chemistry , Electric Conductivity
6.
Adv Sci (Weinh) ; 11(17): e2400074, 2024 May.
Article in English | MEDLINE | ID: mdl-38381058

ABSTRACT

Given the escalating prevalence of electromagnetic pollution, there is an urgent need for the development of high-performance electromagnetic interference (EMI) shielding materials. Herein, wood-based electromagnetic shielding materials have gained significant popularity due to their exceptional performance as building materials. In this study, a novel wood-based composite with electromagnetic shielding properties is developed. Through the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals on wood fibers, coupled with uniform integration of carbon nanotubes (CNTs), a multifunctional composite named ZIF-8/Poplar-CNT composite is synthesized via a one-step thermoforming process. The incorporation of CNTs endows the composites with excellent EMI shielding effectiveness (EMI SE). Among these elements, despite ZIF-8 crystals not possessing intrinsic electromagnetic shielding functionality, their distinctive dodecahedral structure proves adept at scattering and reflecting electromagnetic waves within the composites, further improving the electromagnetic shielding effect. Hence, the ZIF-8/Poplar-CNT composite (56.95 dB) has ≈10 dB higher EMI SE compared to that of the composites without ZIF-8 crystals. Meanwhile, ZIF-8 crystals endow the materials with excellent tensile strength (54.84 MPa, enhanced by 4 times). Moreover, the introduction of Zn2+ provides superior antibacterial properties. The potential applications of ZIF-8/Poplar-CNT composites extend to diverse areas such as building decoration, electronic products, and medical equipment.

7.
Environ Res ; 241: 117628, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37956756

ABSTRACT

In this study, phycoremediation of textile wastewater (TWW) by freshwater cyanobacterial strains such as sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was evaluated, and lipids were simultaneously extracted from biomass for biodiesel production. Onset of the study, Phormidium sp. and Oscillatoria sp. F01 has better growth rates, increased biomass production, high chlorophyll content, and efficient nutrient utilization in TWW compared to Oscillatoria sp. F02. Phormidium sp. showed 1.41 g/L dry weight, followed by Oscillatoria sp. F01 with 1.39 g/L and Oscillatoria sp. F02 with 1.02 g/L biomass. Both strains demonstrated their capability to elevate the pH level while reducing TDS and eliminating/reducing several nutrients such as nitrates, nitrites, phosphates, sulphates, sulphides, chlorides, calcium, sodium, and magnesium. Further, the total lipids extracted from the TWW-grown Phormidium sp., Oscillatoria sp. F01 and Oscillatoria sp. F02 was estimated to be 8.20, 13.70 and 11.20 %, respectively, on day 21, which was higher than the lipid content obtained from control cultures. Further, biodiesel produced from the lipids of all strains showed higher levels of C12:0, C16:0, C16:1, C18:1, C18:2, and C18:3 among all the fatty acids. Therefore, they can potentially offer a valuable source of lipids and diverse fatty acids for high-quality biodiesel production. This integrated system not only offers a solution for TWW treatment but also provides a feedstock for renewable fuel production simultaneously.


Subject(s)
Cyanobacteria , Microalgae , Oscillatoria , Wastewater , Phormidium , Biofuels/microbiology , Biomass , Fatty Acids , Nutrients
8.
Sci Total Environ ; 912: 168873, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38016558

ABSTRACT

Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.

9.
Eco Environ Health ; 2(2): 41-42, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38075294

ABSTRACT

•Microplastic pollution threats environmental and human health.•The resolution of End Plastic Pollution promotes the global strategy against plastic pollution.•The governments should launch relevant policies to implement this resolution.

10.
Science ; 382(6674): 1007, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033061
11.
Int J Biol Macromol ; 253(Pt 5): 127264, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804892

ABSTRACT

In this study, we report the development of a sustainable polymer system with 50 wt% lignin content, suitable for additive manufacturing and high value-added utilization of lignin. The plasticized polylactic acid (PLA) was incorporated with lignin to develop the bendable and malleable green composites with excellent 3D printing adaptability. The biocomposites exhibit increases of 765.54 % and 125.27 % in both elongation and toughness, respectively. The plasticizer enhances the dispersion of lignin and the molecular mobility of the PLA chains. The good dispersion of lignin particles within the structure and the reduction of chemical cross-linking promote the local relaxation of the polymer chains. The good local relaxation of the polymer chains and the high flexibility allow to obtain a better integration between the printed layers with good printability. This research demonstrates the promising potential of this composite system for sustainable manufacturing and provides insights into novel material design for high-value applications of lignin.


Subject(s)
Lignin , Polyesters , Polymers , Plasticizers
12.
J Environ Manage ; 345: 118911, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657294

ABSTRACT

Photocatalytic technology is regarded as a promising approach for fast degradation of refractory organic pollutant in water. However, the performance of the photocatalyst can be restricted by the variation of water matrix conditions. Herein, coconut shell fiber was pyrolyzed to biochar (CSB800) and incorporated with α-MnO2 to degrade bisphenol A (BPA) in water under visible light irradiation. The prepared α-MnO2/CSB800 composites demonstrated high efficacy in degrading BPA. Specifically, 0.01 mM of BPA could be completely degraded by 0.1 g/L of MnO2/CSB800 within 45 min. It was found that the incident light could effectively trigger the separation of electron and hole in α-MnO2. The electron and hole were afterwards converted to hydroxyl radical (●OH), superoxide radical (●O2-) and non-radical singlet oxygen (1O2), which subsequently initiated the photocatalytic degradation of BPA. Additionally, α-MnO2/CSB800 could simultaneously participate the oxidative degradation pathway of BPA with its high oxidation-reduction potential. The introduction of CSB800 led to higher BPA degradation efficiency since CSB800 could accelerate the charge carrier transferring rate during BPA degradation process via either pathway. The co-existence of both photocatalytic and oxidative degradation synergy enables α-MnO2/CSB800/visible light system with high catalytic performance stability towards various water matrices. This study proposes an effective strategy to prepare easy-available photocatalysts with high and stable performance towards for addressing organic pollution issues in water.


Subject(s)
Cocos , Manganese Compounds , Oxides , Oxidation-Reduction , Light
13.
J Environ Manage ; 345: 118837, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634401

ABSTRACT

Process Intensification (PI) is the modification or integration of conventional or novel processes within a single unit operation in order to improve product quality and reduce waste. PI offers numerous advantages, including a reduction in the initial and operational costs, an improvement in product quality/quantity, the generation of less waste, and an increase in process safety. The synergistic effect of PI in comparison to the conventional procedure ensures maximizing resource efficiency. PI can be accomplished in two ways: either by integrating various processes or by modifying the design of equipment to improve operational efficiency. In this regard, the present review provides a comprehensive insight into the application of PI in wastewater and sludge treatment methods and discusses the operational advantages. This review provides a comprehensive list of different PI approaches applied in wastewater and sludge treatment to remove pollutants and the various equipment, techniques and reactors used in PI. The second section addresses the challenges of PI in wastewater treatment that removes dyes, pesticides, organic and inorganic pollutants, micro- and nano-plastics, persistent organic pollutants, pharmaceutical and personal care pollutants.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Sewage , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
14.
Carbohydr Polym ; 318: 121102, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479451

ABSTRACT

Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.

15.
Environ Res ; 232: 116363, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37295587

ABSTRACT

Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.


Subject(s)
Endocrine Disruptors , Environmental Restoration and Remediation , Humans , Biodegradation, Environmental , Hazardous Substances/toxicity
16.
Environ Res ; 232: 116300, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37268207

ABSTRACT

Microalgae is one the promising source of energy for the production of biofuel and other value-added products to replace the existing conventional fossil fuels. However, low lipid content and poor cell harvesting are the key challenges. Based on the growth conditions the lipid productivity will be affected. The current study examines the mixtures of both wastewater and NaCl on the microalgae growth was studied. The microalgae used for conducting the tests were Chlorella vulgaris microalgae. Mixtures of the wastewater was prepared under the different concentrations of the seawater, classified as S0%, S20%, and S40%. The growth of microalgae was studied in the presence of these mixtures, and the addition of Fe2O3 nanoparticles was included to stimulate the growth. The results showed that increasing the salinity in the wastewater resulted in decreased biomass production, but significantly increased lipid content compared to S0%. The highest lipid content was recorded at S40%N with 21.2%. The Highest lipid productivity was also witnessed for S40% with 45.6 mg/Ld. The cell diameter was also found to increase with increasing salinity content in the wastewater. The addition of Fe2O3 nanoparticles in the seawater was found to enhance the productivity of the microalgae extensively, resulting in 9.2% and 6.15% increased lipid content and lipid productivity respectively compared to conventional cases. However, the inclusion of the nanoparticles slightly increased the zeta potential of microalgal colloids, with no noticeable effects on the cell diameter or bio-oil yields. Based on these findings, Chlorella vulgaris was identified as a suitable candidate for treating wastewater with high salinity exposure.


Subject(s)
Chlorella vulgaris , Microalgae , Nanoparticles , Lipids , Wastewater , Seawater , Biofuels , Biomass
17.
Environ Res ; 231(Pt 1): 116074, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37150391

ABSTRACT

The starch is one of the most essential food stuff and serves as a raw material for number of food products for the welfare of human. During the production process enormous volume of effluents are being released into the environment. In this regard, this study was performed to evaluate the physicochemical traits of Manihot esculenta processing effluent and possible sustainable approach to treat this issue using Eichhornia crassipes based biochar. The standard physicochemical properties analysis revealed that the most the parameters (EC was recorded as 4143.17 ± 67.12 mhom-1, TDS: 5825.62 ± 72.14 mg L-1, TS: 7489.21 ± 165.24 mg L-1, DO: 2.12 ± 0.21 mg L-1, BOD 2673.74 ± 153.53 mg L-1, COD: 6672.66 ± 131.21 mg L-1, and so on) were beyond the permissible limits and which can facilitate eutrophication. Notably, the DO level was considerably poor and thus can support the eutrophication. The trouble causing E. crassipes biomass was used as raw material for biochar preparation through pyrolysis process. The temperature ranging from 250 to 350 °C with residence time of 20-60 min were found as suitable temperature to provide high yield (56-33%). Furthermore, 10 g L-1 concentration of biochar showed maximum pollutant adsorption than other concentrations (5 g L-1 and 15 g L-1) from 1 L of effluent. The suitable temperature required to remediate the pollutants from the effluent by biochar was found as 45 °C and 35 °C at 10 g L-1 concentration. These results conclude that at such optimized condition, the E. crassipes effectively adsorbed most of the pollutants from the M. esculenta processing effluent. Furthermore, such pollutants adsorption pattern on biochar was confirmed by SEM analysis.


Subject(s)
Eichhornia , Environmental Pollutants , Manihot , Water Pollutants, Chemical , Humans , Eichhornia/chemistry , Adsorption , Water Pollutants, Chemical/analysis
18.
Environ Res ; 231(Pt 2): 116078, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37182832

ABSTRACT

Nannochloropsis microalgae biochar has become increasingly attractive due to its potential as a component of microalgae-based biodiesel blends. This biochar is a by-product of the pyrolysis process, but its use in the energy sector has been limited. In this study, pellets were formed using microalgae residues and their physiochemical properties were analyzed to assess the feasibility of using microalgae biochar as a fuel source. Three types of biomasses, namely date seed dust, coconut shell waste, and microalgae biochar, were utilized to produce fuel pellets. These pellets were categorized into three types, B1, B2, and B3, based on the composition of the biomass. The inclusion of microalgae biochar in the pellets resulted in enhanced calorific value, as well as improved heating value and bulk density. Moreover, the mechanical strength of microalgae-based pellets was higher due to their high lignin content compared to another biomass. The moisture absorption test results showed that the use of mixed biomass reduced the moisture content over an extended period. Microalgae pellets exhibited higher young's modulus and greater impact resistance, indicating greater mechanical strength. Furthermore, due to their higher calorific value, the combustion time of microalgae pellets was greater than that of other biomass. In conclusion, the results of this study suggest that microalgae biochar can be a promising alternative fuel source for the energy sector.


Subject(s)
Microalgae , Biomass , Pyrolysis , Microwaves
19.
Chemosphere ; 331: 138813, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127202

ABSTRACT

The detection and quantification of p-Nitrophenol in environmental samples are important for understanding the extent and impact of environmental pollution, protecting human health, ensuring regulatory compliance, and guiding remediation efforts. The main objective of this work was to investigate the electrochemical performance of a graphene oxide/cellulose nanofibril composite (GO/CNF) modified carbon paste electrode (GO/CNF/CPE) for the sensitive and reliable detection of p-nitrophenol in water samples. The transmission electron microscopy (TEM) technique was employed to enlighten the structure of nanocomposites. The electrochemical behavior of the fabricated electrochemical sensor was characterized via differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). Under optimized analytical conditions, the peak current of the analyte showed a wide linear relationship with its concentration in a range of 3.0 nM-210 µM with a low amount of the limit of detection (LOD) value of 0.8 nM determined by the DPV method. The proposed electrochemical sensor demonstrated excellent sensitivity, selectivity, and accuracy metrics in real sample analysis of p-nitrophenol.


Subject(s)
Graphite , Water Pollutants , Humans , Cellulose , Water Pollutants/analysis , Nitrophenols/analysis , Graphite/chemistry , Electrodes , Electrochemical Techniques/methods
20.
Environ Res ; 231(Pt 1): 116059, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149019

ABSTRACT

Petroleum-based polymers have raised significant environmental concerns. It is critical to create compostable, good biocompatibility, and nontoxic polymers to replace petroleum-based polymers. Thus, this research was performed to extract the gelatin from fish waste cartilage and coated it over the surface of spherical shaped pre-synthesized ZnNPs along with a suitable plasticizer to produce the biodegradable film. The presence of gelatin on the surface of ZnNPs was first confirmed using UV-visible spectrophotometers, as well as the characteristic functional groups involved in the coating were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). The morphological appearance of gelatin coated ZnNPs was ranged from 41.43 to 52.31 nm, the shape was found as platonic to pentagonal shape, and the fabricated film was observed through Scanning Electron Microscope (SEM). The thickness, density, and tensile strength of fabricated film were found to be 0.04-0.10 mm, 0.10-0.27 g/cm3, and 31.7 kPa. These results imply that the fish waste cartilage gelatin coated ZnNPs-based nanocomposite can be used for film preparation as well as a wrapper for food and pharmaceutical packaging.


Subject(s)
Gelatin , Product Packaging , Animals , Gelatin/chemistry , Tensile Strength , Biopolymers , Food , Food Packaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...